CO2 enrichment and soil nitrogen effects on wheat evapotranspiration and water use efficiency

نویسندگان

  • D. J. Hunsaker
  • F. J. Adamsen
  • S. W. Leavitt
چکیده

Evapotranspiration (ET) and water use efficiency (WUE) were evaluated for two spring wheat crops, grown in a well-watered, subsurface drip-irrigated field under ambient (about 370 mmol mol−1 during daytime) and enriched (200 mmol mol−1 above ambient) CO2 concentrations during 1995–1996 and 1996–1997 in Free-Air CO2 Enrichment (FACE) experiments in central Arizona. The enriched (FACE) and ambient (Control) CO2 treatments were replicated in four, circular plots, each 25 m in diameter. Two soil nitrogen (N) treatments, ample (High N) and limited (Low N), were imposed on one-half of each circular plot. Wheat ET, determined using soil water balance procedures, was significantly greater in High N than Low N treatments starting in late-March (anthesis) during both years. Differences in ET between CO2 treatments during the seasons were generally small and not statistically significant, however, there was a tendency for the ET to be lower for FACE than Control under the High N treatment. The reduction in the cumulative seasonal ET due to FACE averaged 3.7 and 4.0% under High N and 0.7 and 1.2% under Low N in the first and second years, respectively. However, WUE (grain yield per unit seasonal ET) was significantly increased for the FACE treatment under both soil N treatments. For the High N treatment, the WUE was 19 and 23% greater for FACE than Control and for the Low N treatment the WUE was 12 and 7% greater for FACE than Control in the 2 years, respectively. Published by Elsevier Science B.V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The impact of atmospheric temperature and soil nitrogen on some physiological traits and dry matter accumulation of wheat (Triticum aestivum cv. Bahar)

Wheat is the most important cereal crop in the world as well as in Iran. The studies related to the effects of global climate change on wheat production usually assess the impact of changes in atmospheric CO2 concentration and temperature on growth and yield. On the other hand, nitrogen is the most crucial plant nutrient for crop production and the proper management and improving the utilizatio...

متن کامل

Elevated [CO2] and forest vegetation: more a water issue than a carbon issue?

Studies of responses of forest vegetation to steadily increasing atmospheric concentrations of CO2 have focussed strongly on the potential of trees to absorb extra carbon; the effects of elevated [CO2] on plant–soil water relations via decreased stomatal conductance and increased ambient temperature have received less attention, but may be significant in the long term at the ecosystem level. CO...

متن کامل

Water Consumption Characteristics and Water Use Efficiency of Winter Wheat under Long-Term Nitrogen Fertilization Regimes in Northwest China

Water shortage and nitrogen (N) deficiency are the key factors limiting agricultural production in arid and semi-arid regions, and increasing agricultural productivity under rain-fed conditions often requires N management strategies. A field experiment on winter wheat (Triticum aestivum L.) was begun in 2004 to investigate effects of long-term N fertilization in the traditional pattern used for...

متن کامل

Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment

The effects of CO2 enrichment on the growth and physiology of maize were investigated at the molecular, biochemical, leaf, and canopy levels. Maize plants were grown in sunlit soil–plant–atmosphere research (SPAR) chambers at ambient (370 lmol mol ) or elevated (750 lmol mol ) atmospheric carbon dioxide concentration (Ca) under wellwatered and fertilized conditions. Canopy gas exchange rates an...

متن کامل

Climate change effects on wheat yield and water use in oasis cropland

Agriculture of the inland arid region in Xinjiang depends on irrigation, which forms oasis of Northwest China. The production and water use of wheat, a dominant crop there, is significantly affected by undergoing climate variability and change. The objective of this study is to quantify inter-annual variability of wheat yield and water use from 1955 to 2006. The farming systems model APSIM (Agr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000